foot of the altitude of $\triangle ABM$ from M and let $A - M_1 - B$. Prove that then $\overline{MA} > \overline{MB}$ if and only if $\overline{M_1A} > \overline{M_1B}$.

- **8.** If M is the midpoint of \overline{BC} then \overline{AM} is called a **median** of $\triangle ABC$. Consider $\triangle ABC$ such that $\overline{AB} < \overline{AC}$. Let E, D and H denote the points in which bisector of angle, median and altitude from A intersect line \overline{BC} , respectively. Show that (a) $\angle AEB < \angle AEC$; (b) $\overline{BE} < \overline{CE}$; (c) we have H E D.
- **9.** (a.) Prove that in a neutral geometry if $\triangle ABC$ is isosceles with base \overline{BC} then the following are collinear: (i) the median from A; (ii) the bisector of $\angle A$; (iii) the altitude from A;

(iv) the perpendicular bisector of BC. (b.)

Conversely, in a neutral geometry prove that if any two of (i)-(iv) are collinear then the triangle is isosceles (six different cases).

10. Show that the conclusion of the Pythagorean Theorem is not valid in the Poincaré Plane by considering $\triangle ABC$ with A(2,1), $B(0,\sqrt{5})$, and C(0,1). Thus the Pythagorean Theorem does not hold in every neutral geometry.

Theorem In a neutral geometry, if \overrightarrow{BD} is the bisector of $\angle ABC$ and if E and F are the feet of the perpendiculars from D to \overrightarrow{BA} and \overrightarrow{BC} then $\overrightarrow{DE} \cong \overrightarrow{DF}$.

11. Prove the above Theorem. [Th 6.4.7, p 148]

20 Circles and Their Tangent Lines

<u>Definition</u>. (circle with center C and radius r, chord, diameter, radius segment). If C is a point in a metric geometry (S, \mathcal{L}, d) and if r > 0, then

$$C = C_r(C) = \{ P \in \mathcal{S} \mid PC = r \}$$

is a circle with center C and radius r. If A and B are distinct points of C then \overline{AB} is a chord of C. If the center C is a point on the chord \overline{AB} , then \overline{AB} is a diameter of C. For any $Q \in C$, \overline{CQ} is called a radius segment of C.

- 1. Find and sketch the circle of radius 1 with center (0,0) in the Euclidean Plane and in the Taxicab Plane. [Ex 6.5.1, p150]
- **2.** Consider $\{\mathbb{R}^2, \mathcal{L}_E\}$ with the max distance d_s (recall $d_s(P,Q) = \max\{|x_1 x_2|, |y_1 y_2|\}$ where $P(x_1, y_1)$ and $Q(x_2, y_2)$ denote two points in \mathbb{R}^2). Sketch the circle $\mathcal{C}_1((0,0))$.
- **3.** Show that $\mathcal{A} = \{(x,y) \in \mathbb{H} | x^2 + (y-5)^2 = 16 \}$ is the Poincaré circle \mathcal{C} with center (0,3) and radius $\ln 3$. [Ex 6.5.2, p151]

Our first result tells us that in a neutral geometry the center and radius of a circle are determined by any three points on the circle.

<u>Theorem</u>. In a neutral geometry, let $C_1 = C_r(C)$ and $C_2 = C_s(D)$. If $C_1 \cap C_2$ contains at least three points, then C = D and r = s. Thus, three points of a circle in a neutral geometry uniquely determine that circle.

4. Prove the above Theorem. [Th 6.5.3, p152]

<u>Corollary</u>. For any circle in a neutral geometry, the perpendicular bisector of any chord contains the center.

- **5.** If \overline{AB} is a chord of a circle in a neutral geometry but is not a diameter, prove that the line through the midpoint of \overline{AB} and the center of the circle is perpendicular to \overline{AB} .
- **6.** Prove that a line in a neutral geometry intersects a circle at most twice.

<u>Definition</u>. (interior, exterior). Let \mathcal{C} be the circle with center C and radius r. The interior of \mathcal{C} is the set $\operatorname{int}(\mathcal{C}) = \{P \in \mathcal{S} \mid CP < r\}$. The exterior of \mathcal{C} is the set $\operatorname{ext}(\mathcal{C}) = \{P \in \mathcal{S} \mid CP > r\}$.

<u>Theorem</u>. If C is a circle in a neutral geometry then int(C) is convex.

7. Prove the above Theorem. [Th 6.5.5, p153]

<u>Definition</u>. (tangent, point of tangency). In a metric geometry, a line ℓ is a tangent to the circle \mathcal{C} if $\ell \cap \mathcal{C}$ contains exactly one point (which is called the point of tangency). ℓ is called a secant of the circle \mathcal{C} if $\ell \cap \mathcal{C}$ has exactly two points.

8. In the Taxicab Plane prove that for the circle $\mathcal{C} = \mathcal{C}_1((0,0))$: (a). There are exactly four points at which a tangent to \mathcal{C} exists. (b). At each point in part (a) there are infinitely many tangent lines.

Theorem. In a neutral geometry, let \mathcal{C} be a circle with center C and let $Q \in \mathcal{C}$. If t is a line through Q, then t is tangent to \mathcal{C} if and only if t is perpendicular to the radius segment \overline{CQ} .

9. Prove the above Theorem. [Th 6.5.6, p154]

Corollary. (Existence and Uniqueness of Tangents). In a neutral geometry, if C is a circle and $Q \in C$ then there is a unique line t which is tangent to C and whose point of tangency is Q.

10. Prove the above Corollary. [Cor 6.5.7, p155]

<u>Definition.</u> (continuous). Function $h : \mathbb{R} \to \mathbb{R}$ is continuous at $t_0 \in \mathbb{R}$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $|h(t) - h(t_0)| \le \varepsilon$ if $|t - t_0| < \delta$. (Thus if t is "near" t_0 then h(t) is "near" $h(t_0)$.

Intermediate Value Theorem. If $h:[a,b] \to \mathbb{R}$ is continuous at every $t_0 \in [a,b]$ and if y is a number between h(a) and h(b) then there is a point $s \in [a,b]$ with h(s) = y.

21 The Two Circle Theorem

From previus lesson we know that two distinct circles in a neutral geometry intersect in at most two points. The main point of this section is to give a condition for when two circles intersect in exactly two points. This result, called the Two Circle Theorem, will follow directly from a converse of the Triangle Inequality.

<u>Theorem</u>. (Sloping Ladder Theorem). In a neutral geometry with right triangles $\triangle ABC$ and $\triangle DEF$ whose right angles are at C and F, if $\overline{AB} \cong \overline{DE}$ and $\overline{AC} > \overline{DF}$, then $\overline{BC} < \overline{EF}$.

1. Prove the above Theorem. [Th 6.6.1, p160]

Theorem. Let \overline{AB} and \overline{DE} be two chords of the circle $C = C_r(C)$ in a neutral geometry. If \overline{AB} and \overline{DE} are both perpendicular to a diameter of C at points P and Q with C - P - Q, then DQ < AP < r.

2. Prove the above Theorem.

<u>Theorem</u>. (Triangle Construction Theorem). Let $\{S, \mathcal{L}, d, m\}$ be a neutral qeometry and let a, b, c be three positive numbers such that the sum of any two is greater than the third. Then there is a triangle in S whose sides have length a, b and c.

Theorem. Let r be a positive real number and let A, B, C be points in a neutral geometry such that AC < r and $\overrightarrow{AB} \perp \overrightarrow{AC}$. Then there is a point $D \in \overrightarrow{AB}$ with CD = r.

11. Prove the above Theorem. [Th 6.5.8, p156]

<u>Theorem</u>. (Line-Circle Theorem). In a neutral geometry, if a line ℓ intersects the interior of a circle C, then ℓ is a secant.

12. Prove the above Theorem. [Th 6.5.9, p157]

<u>Theorem</u>. (External Tangent Theorem). In a neutral geometry, if C is a circle and $P \in ext(C)$, then there are exactly two lines through P tangent to C.

- **13.** Prove the above Theorem. [Th 6.5.10, p158]
- **14.** In a neutral geometry, if \mathcal{C} is a circle with $A \in \text{int}(\mathcal{C})$ and $B \in \text{ext}(\mathcal{C})$, prove that $\overline{AB} \cap \mathcal{C} \neq \emptyset$.

3. Prove the above Theorem. [Th 6.6.3, p161]

Theorem. (**Two Circle Theorem**). In a neutral geometry, if $C_1 = C_b(A)$, $C_2 = C_a(B)$, AB = c, and if each of a, b, c is less than the sum of the other two, then C_1 and C_2 intersect in exactly two points, and these points are on opposite sides of \overrightarrow{AB} .

4. Prove the above Theorem.

<u>Theorem</u>. If a protractor geometry satisfies SSS and both the Triangle Inequality and the Two Circle Theorem with the neutral hypothesis omitted, then it also satisfies SAS and is a neutral geometry.

- **5.** Prove the above Theorem. [Th 6.6.6, p164]
- **6.** Prove that in a neutral geometry, two circles C_1 and C_2 intersect in exactly two points if and only $C_1 \cap \text{int}(C_2) \neq \emptyset$ and $C_1 \cap \text{ext}(C_2) \neq \emptyset$.
- **7.** Prove that in a neutral geometry a circle of radius r has a chord of length c if and only if $0 < c \le 2r$.
- **8.** In a neutral geometry prove that for any s > 0 there is an equilateral triangle each of whose sides has length s.